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We consider the problem of maximizing a weighted sum of expected rewards in steady-state in multiclass loss networks under
dynamic routing and admission control, with Poisson arrivals and exponentially distributed holding times. By aggregating the
underlying Markov decision process, we derive linear programming relaxations that contain the achievable performance region under
all admissible policies and lead to a series of progressively tighter upper bounds. These relaxations allow stronger bounds at the
expense of higher computational times. We further propose a series of routing and admission control policies from the relaxations
that outperform, in computational experiments, other heuristic policies, such as the dynamic alternative routing with trunk reserva-
tion and the least busy alternative routing, variations of which are used in practice. The suboptimality guarantees defined as best
bound/best policy range from 0 to 2.5% under symmetry conditions (symmetric network topology, arrival rates, link capacities,
rewards), and from 4% to 10% under asymmetry conditions. We discuss the qualitative behavior of these policies and obtain insights

about their performance.

multiclass loss network is a stochastic network that

outes multiple types of calls/messages that may dif-
fer in their arrival processes, holding times and generated
rewards. Loss networks have been widely used as models
for computer and telecommunications networks, local area
networks, multiprocessor interconnection architectures,
database structures, mobile radio and broadband packet
networks. The importance of loss networks has led to ex-
tensive research in the last two decades. For a comprehen-
sive review see Kelly (1991) and Ross (1995).

The two key problems that arise in the area of loss
networks are performance analysis and optimization. The
main performance analysis question is to characterize the
performance of a particular policy of accepting and routing
calls. The main optimization problem is to determine an
optimal policy for accepting and routing calls in the net-
work that maximizes a linear combination of expected re-
wards in steady-state.

With regard to analyzing the loss network performance
given a particular admission control and dynamic routing pol-
icy, the central question is to estimate the probability that a
call is blocked. Even for a policy that always accepts calls
(maximum packing) and uses a static, i.e., a priori deter-
mined, routing policy the computation of the blocking prob-
abilities is #P-complete (Louth et al. 1994), a strong
indication of the intractability of the problem. Given the in-
tractability of the problem, simulation, approximations, and
asymptotics as the size of the network increases are the pri-
mary tools for performance questions (see Lazarev and Star-

obinets 1977, Kelly 1990, Key 1990, Hunt and Laws 1992,
Mitra and Gibbens 1992). Kelly (1986) and Mitra et al.
(1993) develop approximate procedures for estimating block-
ing probabilities based on solving Erlang’s formula under the
assumption of independent blocking. Simulation of specific
routing policies has also been widely used (see, for example,
Weber 1964, Inoue et al. 1989, IEEE Communications Mag-
azine 1990, Gibbens 1990, Mitra and Seery 1991, Ross and
Wang 1992, Gibbens et al. 1993, Ash and Huang 1994).
With regard to optimizing the performance of loss net-
works, there are both admission control and dynamic routing
decisions involved. An admission control policy determines
whether to accept an incoming call, while a dynamic routing
policy determines the route for each accepted call. It is well
known that an optimal policy must have a mechanism for
rejecting arriving calls, since a strategy that always accepts a
call whenever it is possible to carry it (maximum packing)
may carry significantly less traffic than a policy that occasion-
ally does not admit arriving calls. Miller (1969) and Lippman
(1975) show that the optimal policy for the significantly sim-
pler single link problem is to use trunk reservation, which is
an easily implemented control mechanism that gives priority
to chosen traffic streams. Hunt and Laws (1993) prove that
for large, completely connected and symmetric networks, the
asymptotically optimal policy is the “Least Busy Alternative”
(LBA) routing strategy with trunk reservation. Marbukh
(1981) reports results on the analysis of the LBA strategy,
while Ott and Krishnan (1992) propose a policy improvement
algorithm starting with an initial fixed routing scheme. Stacey
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and Songhurst (1987) and Gibbens et al. (1988) develop a
heuristic algorithm, the dynamic alternative routing with
trunk reservation (DAR), variants of which are currently
being used in practice.

In order to compare the efficiency of various heuristic pol-
icies, Gibbens and Kelly (1990) and Kelly (1994) derive
bounds on the performance of any dynamic routing policy.
These performance bounds under Poisson arrival processes
for calls and exponentially distributed holding times, involve
the solution of a linear programming problem. For sym-
metric and fully connected networks with many alternative
paths the bounds are known to be tight (see Kelly 1994).

In the present paper we propose a new mathematical
programming approach for providing upper bounds on the
performance of loss networks and deriving new heuristic
policies using information from the bounds. In particular
our contributions are as follows:

1. We propose a method to construct a series of progres-
sively tighter bounds on the performance of loss networks.
The technique can be seen as a generalization of the work of
Bertsimas et al. (1994) for multiclass queueing networks to
loss networks. It can also be seen as designing appropriate
aggregations (relaxations) of the underlying Markov decision
process. Its power stems from the fact that it takes into ac-
count interactions among the various classes of calls. In ex-
tensive computational experiments we demonstrate that the
second order relaxation leads to almost identical bounds
with the bounds derived in Kelly (1994), while the third
order relaxation improves upon them especially for the
case of asymmetric network topology and/or asymmetric
parameters (arrival rates, link capacities, rewards). The
major benefit of these relaxations is that they allow stron-
ger bounds at the expense of higher computational times.

2. Using information from the bounds, we propose sev-
eral heuristic policies. To the best of our knowledge, there
is no systematic approach to derive policies from relax-
ations. Our work represents a proposal in this direction.
The derived policies are quite close to the bounds, outper-
form policies that have been proposed in the literature
(DAR, LBA) and variants of which are used in practice.
We discuss the qualitative behavior of these policies and
obtain insights about their performance.

The rest of the paper is structured as follows. In § 1, we
formally define the loss network problem and the class of
policies that we consider. In § 2, we introduce the technique
to obtain bounds for the case of the single link problem in a
way that illustrates the basic ideas without excessive notation.
In § 3, we derive a series of bounds for loss networks. In § 4,
we derive heuristic policies from the relaxations of the previ-
ous section. In § 5, we report computational results on the
effectiveness of the new bounds and policies and discuss their
behavior. Finally, in § 6, we include some concluding remarks.

1. PROBLEM FORMULATION

Consider a loss network that is represented by a complete
directed graph G = (V, A) with N = |V/| nodes and |A4| =

N(N — 1) ordered pairs of nodes (i, j). Calls of type (i, j)
need to be routed from node i to node j and carry a reward
wy;. Arriving calls of type (i, j) may be routed either directly
on link (i, j) or on a route r € R(i, j) (a path in G), where
R(i, j) is the set of alternative routes for calls of type (i, j).

We assume that R(i, j) consists of only paths from i to j
that visit only one intermediate node. Let C;; be the capac-
ity of the direct link (i, j). Note that if the network is not
fully connected, then the missing links have C; = 0. Let
S@, j) = {(, )} U R(, j) be the set of routes for calls of
type (i, 7). When a call of type (i, j) arrives at node i, it can
be routed through route r only if there is at least one free
circuit on each link of the route. If it is accepted, it gener-
ates a revenue of w; and simultaneously holds one circuit
on each link of the route r for the holding period of the
call. Incoming calls of type (i, j) arrive at the network
according to a Poisson process of rate A;, while their hold-
ing period is assumed to be exponentially distributed with
rate u and independent of earlier arrivals, holding times,
and the route used to carry the call. The problem is to find
an admission control and dynamic routing policy to maxi-
mize the total expected reward in steady-state.

Let nj(t) be the number of calls of type (i, j) routed
through r that are present in the network at time ¢. The
vector 7i(t) consisting of n(t), (i, j) € A, r € SQ, j), is
called the state of the system at time z. A policy is called
Markovian if each decision is determined solely as a func-
tion of the current state of the system. Under a Markovian
policy the loss network under study evolves as a
continuous-time Markov chain. It is well known that it is
sufficient to restrict our attention to Markovian policies
(see, for example, Heyman and Sobel 1984).

Let nj; = E[nj(t)], where the expectation is taken with
respect to the invariant distribution. We denote with 7 the
vector of nj;. We are interested in determining a scheduling
policy that maximizes a linear reward function of the form

2> wz-,-< 2> n,-’j) :
(i.))eA res(i,j)

As the policies vary, the vectors 77 vary. The set of
achievable vectors 7 is called the achievable region. If we
can characterize the achievable region exactly, then we can
transform the control problem to a mathematical program-
ming problem. Our objective in the next two sections is to
give approximate characterizations of the achievable re-
gion, i.e., to derive linear programming problems whose
feasible regions contain the achievable region. In this way
we obtain a series of progressively tighter upper bounds on
the optimal expected reward.

2. SINGLE LINK: APPROXIMATE AND EXACT
CHARACTERIZATIONS

Our goal in this section is to obtain a set of bounds on the
performance of any Markovian dynamic routing policy for
the problem of one link and two classes of arriving calls.
The advantage of the single link case is that it illustrates



simply and without excessive notation the ideas we will use
for the general network case. Moreover, in this case we are
able to explicitly characterize the achievable region. This
characterization corresponds to modeling the problem as a
Markov decision process.

Consider a single link of capacity C, with two different
types of traffic. Let A, and A, be the arrival rates, w be the
service rate, and w; and w, be the rewards generated by
accepting a type 1 and type 2 call, respectively. We are
interested in maximizing the expected reward X7, wn,,
where n; is the expected value of the number of calls of
type i. Under any Markovian policy we consider the collec-
tion of times at which either an arrival or a completion of a
call occurs. If ¢ is an arrival epoch, we denote by A,(¢) the
decision to accept a call of type i at time ¢. Similarly, we
denote by A,(t) the decision to reject such a call.

2.1. The Max-Flow Bound

If we consider no interaction among the two classes of
calls, then the following linear programming problem:

2

maximize >, w;n; 1)
i=1
subject to
2
2 ni = C7
i=1
n; <A/, i=1,2,
n; =0, i=1,2,

provides an upper bound on the optimal expected reward
(Gibbens and Kelly 1990, Franks and Rishel 1973). Note
that the offered traffic A,/u represents the expected num-
ber of calls in a M/M/» system. Notice that while the linear
program (1) provides a bound on the optimal reward, it
does not provide a policy.

2.2. An Approximate Characterization

The problem can be modeled as a continuous time Markov
decision process (MDP),

(n1(1), na(1)).

Although this is a manageable description, we consider a
partial description in order to illustrate the idea of our
method.

We consider first a partial description of the state space
by considering the individual MDPs (n,(¢)). The probabil-
ity flow equations corresponding to these MDPs provide a
bound on the optimal reward.

In the following theorem, we define as decision variables
(in a linear programming sense) the quantities,

x(ia a) = P{nl(t) = a7Ai(t)}a Y(l, (l) = P{nt(t) = a}a

where we assume that the loss network is operating under
the stationary distribution.

Theorem 1. The solution value of the following linear pro-
gram
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9}

2
maximize >, w; >, ay(i, a) ()
=1 a=0

subject to

Ax(i, a) + pay(i, a)

=Ax(i,a—1)+ pla + 1)y@i,a+1), Vi, a, 3)
C
Sy, a)=1, i=1,2,
a=0
2 C
> X ay(i,a)<C, 4)
i=1 a=0
C
2 ay(i,a) < \/p, i=1,2,
a=0
x(iSa)$y(i5a)5 l:1’2’a:09 ,C_l’

x(i,a), y(i,a) =0,
provides an upper bound on the optimal expected reward.

Proof. We will prove only Equation (3); the other equa-
tions are obvious from the definition of the variables. We
consider the continuous Markov decision process (MDP)
(n,(t)). Equation (3) represents the probability flow equa-
tion of the MDP process (see Heyman and Sobel 1984, p.
244). The LHS of (3) is the rate of probability flow out of
state n,(t) = a, where the RHS is the rate of probability
flow into state n;(t) = a. []

Notice that the above linear program allows only limited
“interaction” between the two classes of calls, in the sense
that variables corresponding to different classes participate
in the same constraints. Only the capacity constraint (4)
allows the two classes to interact in the previous relax-
ation. Notice, however, that the interaction between the
classes occurs only through the expected values n; exactly
in the same way as in the max-flow bound of the previous
section. There is, however, an important difference: Unlike
the solution of (1), the solution of relaxation (2) provides a
policy as it specifies the probabilities x(i, a) = P{n,(t) = a,
A1)}

2.3. An Exact Characterization

As we have already mentioned, the problem can be mod-
eled as a continuous time Markov decision process
(MDP), (n,(t), n,(t)). We define as variables (in a linear
programming sense) the quantities,

x(i’ a, b) = P{nl(t) =a, nZ(t) = b’ At(t)}y

yla, b) = P{n,(t) = a, n,(t) = b}.
Theorem 2 (Miller 1969). The solution value of the follow-
ing linear program

C
maximize w >a > y(a, b)
a=0  {bla+b=C}

c
+w, 2 b X y(a,b) (5)

b=0 {ala+b=<C}
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subject to

2
> Ax(i,a, b) + pla + b)y(a, b)
i=1

=ANx(1l,a —1,b)
+ Ax(2,a,b = 1)+ pla + Dy(a + 1, b)
+ (b + Dy(a, b + 1),
2 2 y(a,b) =1,

a+b=<C_,

x(i,a, b)<y(a, b),
x(i, a, b), y(a, b) =0,

i=1,2,a+b=<C,

is equal to the optimal expected reward.

Note that in the above formulation the capacity con-
straints are absent; they are automatically satisfied because
the quantities x(i, a, b) and y(a, b) are defined only for
a+b=C.

As Miller (1969) and Lippman (1975) demonstrated, the
optimal policy is indeed a trunk reservation policy. Theo-
rem 2 captures this characterization as follows: Assuming
that w; < w,, there exists a number a*, such that x(1, a, b)
=0 foralla + b = a*, while x(1, a, b) = 1 for all a +
b < a*. Moreover, x(2,a, b) = 1for alla, b(a + b < C).
The number a* is called the trunk reservation parameter.

The linear programming problems (1), (2), and (5) have
O(1), O(C) and O(C?) variables, respectively. These relax-
ations suggest that we can formulate inexact relaxations
that provide bounds on the optimal expected reward at
significant computational savings. Moreover, some of these
relaxations (Relaxation (2)) provide heuristic policies. Al-
though the single link problem is a very tractable problem
to solve exactly, these insights carry over to the network
problem as we show in the next section.

3. APPROXIMATE POLYHEDRAL
CHARACTERIZATIONS FOR LOSS NETWORKS

In this section, we derive a series of bounds on the perfor-
mance of a loss network G = (V, A). Let ny(t) be the
number of calls of type (i, j) that are routed through route
r at time ¢. For an arrival epoch of type (i, j) at time ¢, we
denote by Aj(¢) the decision to accept a call of type (i, j)
through route r € S(i, j) at time ¢. Similarly, we denote by
Izlij(t) the decision to reject such a call. It is clear that the
admission control and dynamic routing of calls can be for-
mulated as an MDP using as variables

x;(a, r)=P{at) =a, Ai1)}.

Although an MDP using these variables gives the exact
optimal policy, because of the huge dimensions of the re-
sulting linear program such an approach is not realistic.
For this reason, we will consider different tractable relax-
ations that give rise to concrete policies. We first review
one relaxation that has been proposed in the literature.

3.1. The Max-Flow Bound

Gibbens and Kelly (1990) prove that under all dynamic
routing policies, the optimal expected reward in steady-
state is bounded above by the following linear program-
ming problem:

maximize 2, 2> 0w iing
(i,))EA reS,j)

subject to

D+ Y nh<iilp, VG,Jj) €A,
rER(,j)

nfid 4+ 3
r€R(Kk): G, j)Er

ny<C V(i,j) €A,

ijs

ni=0,n5=0, V(i,j) €A, reR(q,j).

The variable n{” denotes the direct flow from node i to
node j and nj; denotes the alternative flow through route r.
It has been proven (Key 1990) that the bound can be
achieved asymptotically for fully connected networks with
symmetric parameters, as the network size and offered
traffic increase, by the adaptive policy that routes traffic
according to the solution of the above linear programming
problem.

3.2. An Approximate Characterization: First-Order
Relaxation

We consider again a partial description of the state space
by considering the individual MDPs (n,(¢)), where n;(t)
represents the total number of calls using link (i, j) at time
t. The probability flow equations corresponding to these
MDPs provide a bound on the optimal reward. In the
Theorem 3, we define as decision variables the following
quantities:

xij(a’ (la.])) = P{I’ll](t) = a7Ai5‘i’j)(t)}a
xij(“» (ka l?])) = P{nlj(t) = a’AIg?’i’j)(t)}’
yi(a) = Pin;(t) = ay, z;(r) = E[nj(1)].

Theorem 3. The optimal expected reward in the loss net-
work G is bounded above by the optimal value of the
following linear problem:

maximize >, Wi > z;(r) (6)
(i.))eA res(i.j)

subject to

l‘Layij(a) = /\ijxij(a -1,G,)) — )\ijxij(a, (i, ]))

+ > Agxijla — 1, (k, i, ]))
ki(k.i, ) ES(k,f)
- 2 )\ijij(a, (k, i,7]))
k:(k i, J)ES (K, )
+ 2 )\ilxij(a - 1> (i7j7 l))
L:(i,j 1 )ES )
- 2 Ailxzj(aa (i’j7 l)) + [.L([l + 1))’11(“
L:i,j ) ES )
+1), V(i,j)EA,a=0,...,C,—,-, (7
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Figure 1. Five-node fully connected network.

Cij
2 zu() = 2 ayy(a), Vi, j) €A,
reSk,l):(i,j)er a=0
Cy
> yila)=1, V(i j €A,
a=0
Cjj
20 ayjla)<Cy, V(i,j) €A,
2 z;(r) = Njlp, VG, )) EA,
res(,j)

xiia, (i, ), x;(a, (k, i, ) <y;a),

Vk:(k, i,j) € Sk, ), Va,
xi(a, @,j,1) <y;ila), VI:(,j,1)€ES(U,I), Va,
xia, (i, ))), x;(a, (k, i,J)),=0,

V(i,j)EA,a=0,...,C,-j,
xij(a; (i,j, l)): yij(a)’ Zij(r) = O,
V(i,j)EA,a=0,...,C,~j.

Proof. We consider the continuous Markov decision pro-
cess MDP (n,(¢)). By equating the rate of probability flow
out of the state (n,(t) = a) to the rate of probability flow
into the state (n,(t) = a) we obtain:

NjP{ng(1) = a, A1)}

+ > A P{n;(t) = a, A (1)}
kel )ES (ks )
+ > M/P{nzj,‘(f):a,Ai(/i’j’l)(t)}+WlP{”ij(f):a}

L:(,j 1) ES,])

= N P{ng(t) =a — 1, A1)}

+ > AgPlni(t) =a — 1, A;if'i”')(t)}
ke, )Y ES K, )
+ 2 APy =a—1,AF01)}

1:G,j)ESGL)

+ w(a + 1)P{n;(t) =a + 1}.
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Figure 2. Asymmetric rates A;.

Rearranging leads to (7). Apart from the capacity and
offered traffic constraints, the other relations are obvious
from the definition of the variables. []

The number of variables used in the previous relaxation
of the achievable performance region is O(NRC), where N
is the number of demands (i, j), R is the maximum number
of alternative paths for every link and C is the largest link
capacity. Notice that the above relaxation allows limited
“interaction” among the various classes of calls (i, j) in the
network. Interaction of various classes occurs in the link
capacity constraints.

3.3. Aggregate Characterization: Second-Order
Relaxation

In this section we consider a more detailed aggregation of
the underlying MDP. In particular, we consider the aggre-
gated MDP, (n/(t), n;(r)), where the superscript (1) repre-
sents the direct calls and the superscript (2) represents all
the alternative flow that uses link (i, ). We denote by A;(r)
the decision to accept a call of type (i, j) directly at time ¢
and A;(r) the decision to accept any call that uses link (i, )
(i.e., a call from k to j through i for some k, or a call from
i to [ through j from some /). We define the following
variables:

xj(a, b, 0) = P{nj(t) = a, nj(t) = b, AJ(1)},

0=1,2,
yi(a, b) = P{nj(t) = a, nj(t) = b}, z;(r) = E[nj(1)].
Let

Aj=Ajand A= X Ay + 2 A
k:(k,i,j)ES(k,]) L:(@i,j,1)ESGL)

Using similar arguments as before, we obtain the following
result.
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Table I
Numerical Results for the Symmetric Network Topology with w;; = 1
C,;, =10 C; =10 C; =10 C,; =10 Figure 5 Figure 5 Figure 5 Figure 5
Instances A =9 Figure 2 Figure 3 Figure 4 A =7 Figure 2 Figure 3 Figure 4
Max-Flow 180 161 177 200 140 161 172 186
Relax. (6) 180 161 176.3006 196.9953 140 160.7972 170.1667 183.3176
Relax. (8) 153.5349 147.7839 152.1222 162.4981 135.3189 141.5745 145.7076 155.1323
Kelly (1994) 153.5349 147.7839 152.1222 162.4981 135.3189 141.5745 145.7076 155.1323
Relax. (9) 153.5349 147.7170 152.0445 162.4843 135.1272 141.3890 145.5892 155.0787
DAR 150.3910 141.7375 148.3200 161.5540 126.5590 136.1390 141.9740 154.0055*
*+ 0.0799 + 0.0804 *+ 0.0958 + 0.0810 *+0.1013 *+0.1165 *+ 0.0779 *+ 0.0611
DYN 152.6375* 144.6585 150.3555* 162.3525* 126.9810 136.3105 142.0090 153.8275
+0.0971 +0.0829 + 0.0696 + 0.0626 +0.1473 +0.0992 +0.0485 +0.0745
STATIC 151.8570 145.2255% 148.9275 160.3025 131.9275* 138.3345* 142.6140* 151.6790
+0.1639 +0.1419 +0.1659 +0.1811 +0.1519 +0.1542 +0.1102 +0.1527

Theorem 4. The optimal expected reward in the loss net-
work G is bounded above by the optimal value of the
following linear problem:

Cij
maximize ), Wij(E a yila, b)
(i.))eA a=0  ba+b<Cy
+ X z,-j(r)) ®)
rER(,j)

subject to
)\,zlfx,-j(a, b, 1) + )\,%x,;,-(a, b,2) + (a +b)uyyi(a, b)
= )\i}x,»j-(a -1,b,1) + /\,zzfx,-j(a, b—-1,2)
+(a+ Duy;la+1,b)+ (b + Dpyya, b+ 1),
V(i, ), (a, b):a + b < Cy,

Cij
2 Zkl(r): E b 2 yij(a7 b): V(l,])EA,
reR(k,l):(i,j)Er b=0 a:a+b=Cj

Cy

a=0 bia+b=Cjy

c
Ya X yila,b)

a=0  bua+b=Cy

Ci

+2b X yla,b)<Cy Vi, j EA,
b=0  aa+b=<Cj
Ya }’i,'(a, b)
a=0  bua+b=Cjy
+ 2 Zij(r)g)\ij/l‘l’a V(l,])EA,
reR(,j)

xij(aab> 9)$yij(a7 b)7 v(l7,])> 97 (a7 b):a+bgcij)
xij(aa ba 0)5 yij(a’ b), Z[[(r) = 05
V(i,j), 0, (a, b):a + b <Cj.
The number of variables used in the above characteriza-
tion is 3NC? + NR, where N is the number of demands (i,
j) and C is the largest link capacity.

In Relaxation (8) we have expanded the analysis used on
the single-link problem to the network case and we have

treated each link as if it were in isolation. This formulation
takes into account at every link both the direct and the
aggregate alternative flow. This particular way of interac-
tion among classes, although implemented quite differ-
ently, was introduced in Kelly (1994) using dynamic
programming arguments. The degree of interaction be-
tween the classes of calls in Relaxation (8) is higher than
in Relaxation (6). In the computational section we will see
that Relaxation (8) leads to tighter bounds than the ones
derived from Relaxation (6).

3.4. Approximate Characterization: Third-Order
Relaxation

In this section we consider a similar relaxation as in the
previous one, but we now augment the state space by in-
troducing the decision to accept on a specific alternative
route that uses link (i, j). This new approximation of the
performance region allows interaction between the direct
calls using link (i, j) and the calls that are routed alterna-
tively using a specific route consisting of the link (i, j). We
define the following decision variables:

4 3

Figure 3. Asymmetric rates A;.
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Figure 4. Asymmetric rates A;.

xjla, b, (i, ) = P{nj(t) = a, nj(t) = b, A1)},
xjla, b, (k, i,))) = P{nj(t) = a, nj(t) = b, A" (1)},
xijla, b, (i, j, 1)) = P{njt) = a, nj(t) = b, AP (0)},
yi(a, b) = Pinj(t) = a, nj(1) = b},
z;(r) = E[nf(1)].

Theorem 5. The optimal expected reward in the loss net-
work G is bounded above by the optimal value of the
following linear problem:

Cij
maximize . w,»,-(E a 2 yila, b)

(i,j)eA a=0  ba+b<Cj

+ X zi,-(r)> ©

re€R(,j)

subject to

4 3

Figure 5. Asymmetric capacities Cy;.
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Figure 6. Asymmetric rewards w;;.

pla +b)y;(a, b) = Ajx;(a —
- )\Ij,'xzj,‘(a, b, (i,j))

+ 2 Aijij(ay b - 17 (ka ir ]))
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Table 11
Numerical Results for the Symmetric Network Topology with Asymmetric w;;

C,; =10 C,; =10 C; =10 C,; =10 Figure 5 Figure 5 Figure 5 Figure 5
Instances A =9 Figure 2 Figure 3 Figure 4 Ay =17 Figure 2 Figure 3 Figure 4
Max-Flow 513 462 505 575 399 462 496 547
Relax. (6) 513 462 504.3006 568.1215 399 461.7972 492.2673 540.6047
Relax. (8) 475.7227 446.0763 470.7498 512.4231 393.3802 433.4687 453.1082 489.1450
Kelly (1994) 475.7227 446.0763 470.7498 512.4231 393.3802 433.4687 453.1082 489.1450
Relax. (9) 475.2197 445.9519 470.1752 511.0087 393.2768 432.7652 451.7711 487.6016
DAR 428.7290 407.4830 421.2355 458.3565 361.2795 390.6085 406.7500 439.2390
= 0.3282 +0.3521 = 0.3048 = 0.2486 +0.3300 +0.3617 = 0.2883 +0.2386
DYN 430.2970 404.5310 422.0240 448.7120 362.9500 390.0040 408.5395 433.5815
+0.3621 +0.3383 +0.3114 +0.3176 +0.3992 +0.3892 +0.2805 +0.3670
STATIC 436.7510% 420.7865*  439.3345% 466.8990* 378.5880* 406.8750* 418.7945* 445.8550*
+0.5270 +0.3933 +0.4152 +0.5214 + 0.4567 +0.5769 +0.7922 +0.7179
Proof. We consider the continuous Markov decision pro- A different approach to bounding the performance of
cess (MDP) (n)(t), nj(r)). Equation (10) represents con- loss networks is developed by Kelly (1994). This bounding
servation of probability flow out of and into state (n,_-l,-(t) = method is based on aggregating all alternative flows in the
a, nfj(t) = D). The other equations are obvious from the loss network as follows. In every link (i, j) there are two
definition of the variables. [] types of flows: the direct flow and all the alternative flow
The number of variables in the linear program (9) is present in the link. Using the exact solution via dynamic
2NRC?. Note that we can overcome the difficulty imposed programming for the single link case, Kelly (1994) derives
by the large capacity by scaling the actual link capacity and bounds on the optimal reward. As we have already men-
changing its measure so as to represent a block of circuits. tioned, our second relaxation is close in spirit with this
The methodology that we have developed so far leads to approach. In fact, our computational results of Section 5
a polyhedral set that contains the performance region of indicate that the bounds are extremely close, although not
loss networks and takes into account interactions between identical.

calls routed directly or alternatively. We can easily gener-

alize the proposed method and by augmenting the aggre- 3.5. Symmetric Loss Networks

gated state space of the underlying MDP, we can obtain We now restrict our attention on applications of the meth-
relaxations that lead to tighter bounds at the expense of odology presented in the previous section for the simpler
higher computational requirements. By continuing in this case of a symmetric, fully connected loss network. This
manner, we can recapture the exact formulation of the kind of network has received much attention and there is
problem as an MDP. now a considerable literature and understanding of the
Table III
Trunk Reservation Parameters for the Symmetric Network Topology

¢, =10 c,;, =10 C,; =10 c,;, =10 Figure 5 Figure 5 Figure 5 Figure 5
Link Ay =9 Figure 2 Figure 3 Figure 4 Ay =T Figure 2 Figure 3 Figure 4
1-2 3 3 3 4 2 3 3 4
1-3 3 3 4 4 3 4 5 5
1-4 3 3 4 5 3 3 5 6
1-5 3 2 3 4 2 2 3 4
2-1 3 3 2 4 2 3 2 4
2-3 3 3 4 5 2 3 4 4
2-4 3 2 2 4 2 2 2 4
2-5 3 3 3 4 2 3 3 4
3-1 3 3 4 4 2 2 3 3
3-2 3 2 3 5 2 2 3 5
3-4 3 3 4 4 2 3 4 4
3-5 3 3 3 4 2 2 3 3
4-1 3 2 3 4 3 3 4 5
4-2 3 3 2 4 3 3 3 4
4-3 3 3 4 4 2 3 3 4
4-5 3 3 2 4 2 2 2 4
5-1 3 3 4 4 2 3 4 4
5-2 3 3 4 4 2 3 4 4
5-3 3 3 3 4 2 3 3 4
5-4 3 2 2 5 2 2 2 5




4 3

Figure 7. Five-node asymmetric network.

behavior of dynamic routing policies applied to it (Mitra et
al. 1993, Mitra and Gibbens 1992, Gibbens and Kelly
1990). As the number of nodes and alternative routes in-
creases, the bounds obtained by trunk reservation policies
tend to be tight. Asymptotically and when there is symme-
try in all input parameters, the optimal policy is of the
threshold type: An incoming call (i, j) is routed directly if
there is at least one free circuit or through a two-link
alternative path, provided that the number of calls cur-
rently in progress in both links of the path is below an
appropriately chosen trunk reservation parameter.

Consider a symmetric, fully connected network with N
nodes, where A; = A, u = 1, w; = 1 and C; = C. By
symmetry, there are just two types of flows, one carried on
a direct route and another carried on a two-link alternative
route. Let n'(¢) be the number of calls per link that are
routed directly at time ¢ and n”(¢) be the calls per link that
are routed alternatively at time ¢. The dimension of the
problem is significantly smaller than before. As a result, we
are able to solve large-scale networks very efficiently.

By defining the following decision variables:

z(0) = E[rn%)], 6=1,2,

the max-flow bound on the expected reward in steady-state
is given by the following problem:

maximize(|A4|z(1) + [4|(N — 2)z(2)) (12)
subject to

z(1) + (N — 2)z(2) < A,

z(1) + 2(N - 2)z(2) < C,

z(1), z(2) = 0,

where |4] = N(N — 1) is the number of the ordered pair
of nodes.

The decision variables introduced in Relaxation (6) are
reduced by symmetry to the following quantities:
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x(a, 0) = P{n(t) = a, A%},
y(a) = P{n(t) = a},

where n(t) is the total number of calls present in a link at
time ¢. Then, the optimal expected reward is bounded
above by the optimal value of the following linear pro-
gram:

maximize(|A|z(1) + |4|(N — 2)z(2)) (13)

subject to

0=1,2,

ay(a) = Ax(a — 1, 1) — Ax(a, 1)
+2(N —2)xx(a —1,2) — 2(N — 2)Ax(a, 2)

+(a+1y@+1), a=0,...,C,

C

z(1) + 2(N = 2)z(2) = X ay(a),
a=0

c

2 yla) =1,

a=0

z(1) + 2(N —2)z(2) < C,

z(1) + (N —2)z(2) <A,

x(a, 60)<y(a), 06=1,2,a=0,...,C,

x(a, 6),y(a), z(1),z(2)=0, 6=1,2,a=0,...,C.

Because by symmetry there is no distinction between
alternative calls using a link, Relaxations (8) and (9) are
equivalent. Defining the following variables:

x(a, b, 0) =P{n'(t) =a, n*t) = b, A%1)},
y(a, b) = P{n'(t) = a, n*(t) = b},

the average reward per unit time is bounded above by the
problem:

maximize(|A4|z(1) + [4|(N — 2)z(2)) (14)

0=1,2,

subject to
Ax(a, b, 1) + 2(N — 2)Ax(a, b, 2) + (a + b)y(a, b)
=M(a—1,b,1) +2(N—2)Ax(a, b — 1, 2)
+(a+ Dy(a+1,b)+ b+ 1y(a, b+ 1),
c
z()=2a X ya,b),

a=0  bua+b=C
C

2(N —2)z(2) = a > yla,b),
b=0 a:a+b<C
> yla,b)=1,
a,b:a+b=C

z(1) + 2(N — 2)z(2) = C,
z(1) + (N — 2)z(2) < A,
x(a, b, 0)<y(a,b), 6=1,2,V(a,b)a+b
<C,
x(a, b, 0),y(a, b), z(1), z(2) = 0,
0=1,2,V(a,b)a+b=<C.

The number of variables needed for Relaxations (12),
(13), and (14) is O(1), O(C), and O(C?), respectively.



388 / BERTSIMAS AND CHRYSSIKOU

Table IV
Numerical Results for the Asymmetric Network Topology with w;; = 1
C,; =10 C; =10 C; =10 C,; =10 Figure 11 Figure 11 Figure 11 Figure 11
Instances A =9 Figure 8 Figure 9 Figure 10 Ay =17 Figure 8 Figure 9 Figure 10
Max-Flow 126 112 125 140 98 112 121 131
Relax. (6) 126 112 123.8698 134.5948 98 109.9550 117.0262 125.8031
Relax. (8) 107.3013 102.7700 107.1094 114.5898 92.0074 97.8346 102.2940 109.2020
Kelly (1994) 107.3013 102.7900 107.1094 114.5898 93.2482 98.2800 102.2940 109.2020
Relax. (9) 107.2207 102.6398 106.9730 114.5704 93.1246 97.9900 102.1123 109.1606
DAR 105.2025 98.6599 104.4455 114.1055* 89.5632 94.6840 99.8781 108.5875*
+0.0783 +0.0931 + 0.0847 +0.0491 +0.0792 *+ 0.0948 *+ 0.0362 + 0.0764
DYN 105.1120 98.8338 104.3900 113.8245 88.4288 94.7754 99.9837 108.5030
+ 0.0629 + 0.0909 +0.0671 + 0.0670 + 0.0765 +0.0742 + 0.0988 +0.0616
STATIC 105.9030* 101.1520* 105.1465*  112.8550 91.7282% 96.4015* 100.5060*  107.1290
+0.1707 +0.1331 +0.1270 +0.1626 +0.1188 +0.1262 *+0.0960 +0.1452

4. HEURISTIC POLICIES

Clearly, an exact formulation of the problem as an MDP
leads to an exact admission control and dynamic routing
policy, that is deterministic. Given complete knowledge of
the state space, we would accept an incoming call (i, j)
through r according to the probabilities

x;(a, r)=P{at) =a, A1)}

Note that under complete information x;(@, r) would be
either 0 or 1. Given that the quantities x;(d, r) are not
known, due to the huge dimensions of the resulting linear
program, we propose instead policies that use only partial
information of the state space. In particular, we propose
policies that naturally arise from the third-order relaxation
we proposed.

4.1. Dynamic Heuristic Policies Arising from the
Third-Order Relaxation

Our goal in this section is to derive efficient heuristic pol-
icies from the solution of the third-order relaxation de-
scribed in Section 3.4. After solving this relaxation, we
obtain the following joint probabilities:

Figure 8. Asymmetric rates A;.

xi(a, b, (i,))) = P{nj(t) = a, nj(t) = b, A (1)},
xulay, by, (i, k, j)) = P{nj(t) = ay, nj(t)
— by, AP0},
xii(as, by, (i, k, j)) = P{”I}j(t) =das, n/%j(t)
— by, AP0},
yila, b) = P{nj(t) = a, nj(t) = b}.

Given the state of the network, we propose to accept an
incoming call (i, j) on the direct link with probability:

:xij(a, b: (17]))
yij(a’ b)

Moreover, we propose to accept an incoming call (i, j) on
the randomly selected alternative path (i, &, j) for some k
with probability that depends on the traffic on links (i, k)
and (k, j). We could use as an estimate of this probability
the quantity:

P{AJF(0)|nj(t) = a, nj(t) = b}

A = P{ARN (1) |nj(t) = a, nj(t) = b}

:xik(a7 b; (ly k;]))
yik(a7 b) ’

or
B = P{AJ*(t)|nj(t) = a, nj(t) = b}

:xjk(as bs (ly ka ]))
yik(a, b)

Other possibilities is to use min(A4, B) or (4 + B)/2. We
have found empirically that using (4 + B)/2 as an esti-
mate of the probability of acceptance in an alternate route
leads to better results. One could conceivably extend the
above proposal and find the best weighted combination of
A and B.

As we will see in Section 5, the obtained set of policies
have some interesting properties. In the heuristic solution,
alternative routing is only used for an intermediate level of
network traffic; this is consistent with the comments in
Gibbens and Kelly (1990). In addition, we obtain a two-
dimensional trunk reservation parameter for every link in
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Figure 9. Asymmetric rates A;.

the network that suggests that we actually perform a mul-
tilevel threshold policy in every link.

The probability of acceptance on a alternative route is
nonzero only if the number of busy circuits in both links
used is below a certain integer that depends on the level of
direct and alternative flow on those links. In this sense the
proposed policies provide an effective mechanism for con-
trolling the unrestricted use of alternative routing that may
severely degrade the performance of the network.

4.2. A Static Heuristic Policy Arising from the Third-
Order Relaxation

In this section we propose a static heuristic policy that
arises from the third-order relaxation. The proposed policy
is static in the sense that it does not depend on the state of
the system. The policy is described as follows.

Accept an incoming call (i, j) on the direct link with
probability:

4 3

Figure 10. Asymmetric rates A;.
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4 3

Figure 11. Asymmetric capacities C;.
PiAf (1)} = (%) P{nj(t) = a, nj(t) = b, AJ)(0)}

Z xl:/'(a’ b> (15]))

(a,b)

Accept an incoming call (i, j) on the randomly chosen
alternative path (i, k, j) for some k with probability:

P{AJRI()} = (Zb) P{nj(t) = a, nj(t) = b, AJ*(1)}

2 P{ng(t) = a, ngy(1) = b, A1)}
(a,b)

= E xik(aa b’ (la k’]))
(a,b)

= E ij(a, b’ (l) k’]))
(a,b)

The last equality was imposed as constraint (11) in the
third-order relaxation. An advantage of the above static
policy is that it does not require any knowledge of the state
of the network links. In the next section we illustrate that
in many cases the static policy yields better performance
results than dynamic policies arising in the literature.

5. COMPUTATIONAL RESULTS

In this section we provide computational results in order
to evaluate the performance of our bounding techniques
and proposed heuristic policies for multiclass loss net-
works. We restrict our attention to complete as well as
sparsely connected networks under conditions of symmet-
ric and asymmetric problem parameters. We address the
following questions:

1. The quality of the proposed bounds and their compari-
son with those proposed in Kelly (1994), which repre-
sent, to the best of our knowledge, the state of the art.

2. The quality of the proposed policies and their compar-
ison with those of dynamic alternative routing with
trunk reservation (DAR) (Gibbens and Kelly 1990),
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Table V
Numerical Results for the Asymmetric Network Topology with Asymmetric w;
C,; =10 C; =10 C; =10 C; =10 Figure 11 Figure 11 Figure 11 Figure 11
Instances A =9 Figure 8 Figure 9 Figure 10 A =T Figure 8 Figure 9 Figure 10
Max-Flow 306 273 309 345 238 273 299 328
Relax. (6) 306 273 306.4716 334.6542 238 270.7000 291.8802 317.7180
Relax. (8) 281.0646 262.3801 283.7627 308.7852 230.3609 252.4361 272.5380 294.1770
Kelly (1994) 281.0646 262.3801 283.7627 308.7852 232.2351 253.1035 272.5380 294.1770
Relax. (9) 280.5751 262.1257 283.2337 307.1803 231.7851 252.7518 271.4671 292.2671
DAR 255.3430 241.8830 255.0190 277.1125 214.4990 229.9370 243.7195 263.2080
+0.1711 +0.2275 + 0.2826 + 0.1309 +0.2478 + 0.2802 +0.1339 *+0.2043
DYN 259.0200 242.4255 258.8705 282.6800* 213.8480 231.9250 248.0025 266.8305
+0.3188 + 0.2896 +0.2374 +0.1747 +0.2656 +0.2498 +0.2771 +0.2211
STATIC 261.6175* 254.3705* 264.8295*  279.4915 223.7170% 237.1780* 252.8445*% 272.7070%
+0.9320 + 0.4307 +0.3847 + 0.5479 + 0.4637 + 0.9864 *+ 0.7866 + 0.4628

which represent, to the best of our knowledge, one of
the most effective policies proposed in the literature.
Under the DAR policy a call is first offered to the direct
route and is accepted if there is a free circuit. If the
direct link has reached its full capacity, the call is next
offered to a randomly chosen two-link alternative route
and is accepted if the number of free circuits on each
link is greater than the link’s trunk reservation parame-
ter ¢ (i.e., the number of free circuits is at least C — ¢ —
1). The calculation of the trunk reservation parameter
is done as described in Gibbens and Kelly (1990). Oth-
erwise, the call is rejected and lost from the system.

3. The role of the following factors to the quality of the
bounds and policies: (a) asymmetry in the topology of
the network, (b) asymmetry of the data, and (c) size of
the network.

4. Understanding of the qualitative behavior of the pro-
posed policies and the reasons for their success.

5.1. Symmetric Network Topology Examples

Consider the five-node fully connected network of Figure
1. We calculate the following bounds:

Figure 12. Asymmetric rewards wy;.

—_

The Max-Flow Bound presented in § 3.1.

The upper bound derived in § 3.2 using Relaxation (6).

3. The aggregate upper bound obtained in § 3.3 using
Relaxation (8).

4. The upper bound derived in § 3.4 with Relaxation (9).

5. The upper bound developed in Kelly (1994).

N

We also present the performance of the following policies:

1. The dynamic alternative routing scheme with trunk res-
ervation (DAR) (Gibbens et al. 1988, Stacey and Song-
hurst 1987).

2. The dynamic policy of § 4.1 using average values for the
calculation of probabilities in an alternative route.

3. The static policy proposed in § 4.2.

We consider examples with both symmetric and asym-
metric problem parameters (arriving rates Ay, link capaci-
ties Cy;, and generated rewards w;;). The service rate w is
assumed to be one in all instances considered. We have
calculated all the bounds using the linear programming
package CPLEX, and we have simulated all the proposed
policies. In all the tables we report both the estimated
simulated value and its standard deviation.

Table I compares the upper bounds and heuristic poli-
cies obtained for the case of symmetric rewards through-
out the network (w; = 1). We consider both symmetric
and asymmetric arrival rates and link capacities. The ar-
rival rates used in Table I are described in Figures 2, 3,
and 4, while the capacities are described in Figure 5. The
arrival rates increase from Figure 2 to Figure 4, and hence
the traffic becomes heavier.

Table II compares the bounds and policies obtained for
the case of asymmetric rewards, which are described in
Figure 6. The trunk reservation parameters used for the
simulation of the DAR policy are given in Table III; they
are assumed to be the same for symmetric and asymmetric
rewards, even though the notion of trunk reservation has
to be rethought in the context of differing weights.

Both tables suggest that the bounds from Relaxations
(8) and the one considered by Kelly (1994) are the same,
while Relaxation (9) is slightly better. Somewhat surpris-
ingly, the static policy improves upon the performance of
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Table VI
Trunk Reservation Parameters for the Asymmetric Network Topology

C,; =10 C,; =10 C; =10 C; =10 Figure 11 Figure 11 Figure 11 Figure 11
Link Ay =9 Figure 8 Figure 9 Figure 10 Ay =T Figure 8 Figure 9 Figure 10
1-2 3 3 3 4 2 3 3 4
1-3 3 3 4 4 3 4 5 5
1-4 3 3 4 5 3 3 5 6
1-5 3 2 3 4 2 2 3 4
2-1 3 3 2 4 2 3 2 4
2-3 3 3 4 5 2 3 4 4
3-1 3 3 4 4 2 2 3 3
32 3 2 3 5 2 2 3 5
3-4 3 3 4 4 2 3 4 4
4-1 3 2 3 4 3 3 4 5
4-3 3 3 4 4 2 3 3 4
4-5 3 2 2 4 2 2 2 4
5-1 3 3 4 4 2 3 4 4
5-4 3 2 2 5 2 2 2 5

the dynamic alternative routing strategy, while the perfor-
mance of the proposed dynamic policy is comparable to
DAR. Under symmetric rewards (Table I), the bounds and
the policies are very close to each other. The suboptimality
guarantees defined as best bound/best policy range from 0
to 2.5%. Generally, as the traffic becomes heavier the sub-
optimality guarantee improves. However, for asymmetric
rewards (Table II) the suboptimality guarantee is less
tight, ranging from 4% to 10%. Especially for asymmetric
rewards (Table II), the improvement of the static policy
over DAR is quite noticeable.

5.2. Asymmetric Network Topology Examples

Consider the five-node network of Figure 7. We present
examples with symmetric as well as asymmetric system pa-
rameters Ay, C;, and wy; the service rate p is assumed to
be one in all instances considered.

Table IV compares the bounds and policies obtained for
the case of w; = 1. We consider both symmetric network
parameters as well as asymmetric arrival rates and link
capacities in Figures 8 through 11. The arrival rates in-
crease from Figure 8 to Figure 10, and hence the traffic
becomes heavier. Table V compares the bounds and poli-
cies obtained for the case of asymmetric rewards shown in
Figure 12. The trunk reservation parameters are given in
Table VI

The conclusions from this study are qualitatively the
same as before. Tables IV and V suggest that the bounds
from Relaxations (8) and the one considered by Kelly
(1994) are very close, although not identical, while Relax-

ation (9) is slightly better. Again the static policy is stron-
ger and sometimes significantly, especially under
conditions of asymmetry. The degree of the improvement
in both the bound (9) over the bound in Kelly (1994) and
the static policy over DAR increases as the asymmetry
increases.

We have also considered larger instances of the problem
(Figures 13 through 14), where similar results are obtained
for medium traffic load conditions (see Table VII). In ad-
dition to the policies, we also present the least busy alter-
native routing strategy with trunk reservation (LBA)
(Gibbens and Kelly 1990). The trunk reservation parame-
ters are given in Table VIII.

5.3. Insights from the Computations

The computational results suggest that the bounds from
Relaxations (8), (9) and Kelly (1994) are very close, with
Relaxation (9) being the tightest but only slightly. In the
case of asymmetric rewards, the improvement in the per-
formance bound is larger as the traffic becomes heavier
(see last column of Table V). The closeness of the bounds
is not surprising because the proposed approach based on
aggregations of the underlying MDP and the one proposed
in Kelly (1994) treat each link as if it were in isolation and
consider that the interaction among calls in the network is
captured through the total alternative flow present in a
link.

The main advantage of the proposed method is that it
provides a natural way to obtain heuristic policies using
partial information of the network state space. Particularly

Table VII
Numerical Results for C;; = 10 and Asymmetric Rates (Figure 13)
Max-Flow Relax. (6) Relax. (8) Kelly (1994) Relax. (9)
w; =1 342 342 311.0631 311.0631 310.6223
Figure 14 608 608 575.6303 575.6303 575.4059
DAR DYN STATIC LBA
w; =1 299.0500 = 0.1418 299.4615 = 0.1777 305.0270* = 0.1841 300.2005 *= 0.1305

Figure 14

539.7685 = 0.2963

540.8950 = 0.3488

553.6180* = 0.4683

541.1670 = 0.2157
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Figure 13. Asymmetric rates A;.

for asymmetric rewards, the proposed static policy outper-
forms the DAR scheme by as much as 5%. We next at-
tempt to understand qualitatively the behavior of our
heuristic policies:

1. Dynamic routing of our heuristic policies is performed
only for an intermediate range of overload (see Figure
15). As the traffic increases, alternative routing disap-
pears and the proposed policy is to always accept on the
direct link. This behavior is also present in the max-flow
bound in Gibbens and Kelly (1990) and discussed as
well in Gibbens and Kelly (1995).

2. For fixed traffic rates A, alternative routing is allowed
only when the chosen route is moderately loaded (see
Figure 16). When the alternative route is heavily
loaded, the probability of acceptance on that route be-
comes zero, and the alternatively routed calls are re-
jected in anticipation of calls that are to be routed
directly on the links that constitute the route.

3. The probability of acceptance of a call under our pro-
posed heuristic policies depends on both the direct and
alternative flow through a link; while in DAR, the prob-
ability of acceptance depends solely on the fotal flow. In
addition, under the dynamic heuristic policy we obtain a
two-dimensional trunk reservation parameter for every
link in the network that seems to suggest that we actu-
ally perform a multilevel threshold policy in every link.
The probability of acceptance on an alternative route is
nonzero only if the number of busy circuits in both links
used is below a certain integer that depends on the level
of direct and alternative flow on those links. In this
sense the proposed policies provide an effective mecha-

Figure 14. Asymmetric rewards w;.

nism for controlling the unrestricted use of alternative
routing that may severely degrade the performance of
the network. We believe that this property is the central
reason that our heuristic policies outperform the DAR
policy.

4. The proposed dynamic policy implicitly derives the
trunk reservation parameter for every link; the proba-
bility of acceptance on an alternative route would be
zero if the number of occupied circuits in the used links
is above a certain integer (in Figure 16 this number is
7). Note though an important difference: The probabil-
ity of acceptance when the number of calls is below the
trunk reservation parameter is not necessarily one (in
Figure 16 it is 0.73), as it is the case in DAR and other
policies used in practice.

5. In the proposed static heuristic policy the acceptance
probability of an arriving call is not always one, even
though the link’s capacity may not have been reached.
Thus, even in the static policy there is a mechanism for
controlling the arriving stream of calls in a way that
improves the network’s performance.

6. CONCLUDING REMARKS

In the present work, we propose a technique for approxi-
mating the region of achievable performance for multiclass
loss networks, with Poisson arrivals and exponentially
distributed holding times by considering aggregations of
the MDP characterization of the problem. The method
takes into account pairwise interaction between the di-
rectly and alternatively routed calls and by augmenting

Table VIII
Trunk Reservation Parameters for C; = 10 and Asymmetric Rates (Figure 13)

Link 1-2 1-

1-6 1-7 1-8 2-1 2-4

2-6 2-7 3-4 3-7 3-8 3-10 4-1

4
t 3 2 2 3 3 2 3 3 3 3 3 3
Link 4-2 4-3 4-5 4-6 4-7 5-4 5-6 6-1 6-2 6-4 6-5 7-1 7-2 7-3
t 2 3 3 3 2 3 3 2 3 3 3 3 3
Link 7-4 7-8 7-10 8-1 8-3 8-7 8-9 8-10 9-8 9-10 10-3 10-7 10-8 10-9
t 3 3 2 3 3 3 3 2 3 2 3 3 2 2
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Figure 15. Asymmetric network topology with C; = 10, w;;
= 1, and A; = A. We plot the probability of
acceptance on the direct route (1,
3)P{A5P(t)} versus the probability of accep-
tance on the alternative routes (1, 2, 3) and (1,
4, 3), PAAED(0)} + PLAL ()}

the aggregated state space of the underlying MDP we
can obtain relaxations that are expected to lead to
tighter bounds at the expense of higher computational
requirements.

For highly connected and symmetric networks the
bounds are very close to those derived in Kelly (1994). As
the degree of asymmetry in the problem parameters in-
creases, the proposed bounds become stronger but only
slightly. The use of the proposed method in a variety of
more realistic settings remains to be explored and is a
natural, as well as necessary, continuation of the present
work.

The main advantage of the proposed method is that it
provides a natural way to obtain heuristic policies using
partial information of the network state space. We de-
scribe heuristic policies arising from the relaxations that
improve upon the performance of heuristics used in prac-
tice. In addition, we obtain insight about the qualitative
behavior of these policies that explain, to a certain degree,
their success.

0 2 4 6 8 10
tot

P T X

=3
®

Figure 16. Probability of acceptance on (1, 2, 3) under Cj;
= 10 and asymmetric rates (Figure 2).
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